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Heterogeneity

• Vadose zone characterized by
heterogeneous geologic materials

• Spatial variability of unsaturated hydraulic
properties influences the movement of
– water

– vapor

– non-aqueous phase liquids (NAPL’s).



One Approach to
Characterization

• Large number of hydraulic property
observations (eg, Deflaun et al., 1997)

• On typical or test materials
– outcrops, excavations, boreholes,

core and other samples

• Interpreted using models
– geostatisical

– geological



You could take many samples
back to the lab...

Removing multiple samples for laboratory
analysis is:

• expensive,

• time-consuming, and
• may not yield results representative of

heterogeneous field conditions.



Simple and rapid field methods
for estimating in situ properties
Appealing & cost-effective, but need:

– rapid measurements
> small sample volume (measurement support)

– low cost per data point

– accurate (unbiased) spatial statistics
– measurements should accurately reflect the spatial

variation of properties between sampled locations,

– appropriate instrument range
> relevant to the range of typical conditions

– clastic sediments
– low clay content (such as found at many DOE sites).



Properties of interest

• saturated (intrinsic) permeability, k
     (or saturated hydraulic conductivity, Ks)

• porosity, φ.

• relative permeability, kr (fcn. of saturation)

• pore pressure - saturation
– especially key parameters like air entry value



Gas Minipermeameter
• Principle (eg, Davis et al, 1994; Tidwell & Wilson, 1997):

– Measure flow rate for applied pressure drop.
• Darcy's Law in a unique geometry

– Yields measure of (effective) intrinsic permeability:

– Using a transient, can also give porosity.
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Miniperm Flow Field

ΦΦ streamlines

(afterWilson and Aronson, 2000)



Gas Minipermeameter
Two kinds of instruments:

Compressed Gas Tank +
Mass Flow Meters:

Falling Piston +
“Stop Watch”:

(eg,Tidwell & Wilson, 1997) 
(eg, Davis et al., 1994)
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Effective Permeability
of an instrument

Model: power law convolution of
• point scale permeability and
• a spatial filter or weighting function
• over the volume of the sampled rock.
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Calculating Filter Functions

• Two approaches
– Experimental methods,

• For example, using many measurements taken at
several different scales (Tidwell et al, 1999).

– Theoretical method,
• New (Wilson and Aronson, 1999).

• Uses adjoint state sensitivity analysis.

• Can be applied to other instruments.
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Calculating Filter Functions

• Two approaches
– experimental methods,

• using many measurements taken at several different
scales (Tidwell et al, 1999)

– theoretical method
• new (Wilson and Aronson, 1999)

• uses adjoint state sensitivity analysis

• can be used for any instrument



Weight drops off
logarithmically

Weight greater
under the tip
seal

Weight greatest
at inner edge,
then outer edge.

Less weight
along centerline

Theoretical 3D
POINT WEIGHTS
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Weighting Functions

• Indicate that
– the region directly beneath the inner tip seal

no-flow boundary makes the greatest
contribution to the measurement.

– 95% of the total weight is contained in a
right cylinder within a radius equal to 2.3
times the inner tip seal radius (95% inside
2.3xa)

– In good agreement with previous published
indirect numerical and experimental
observations.



For saturated properties we
can (mostly) satisfy criteria:

– rapid measurements; small sample volume

– low cost per data point

– accurate (unbiased) spatial statistics
– measurements should accurately reflect the spatial

variation of properties between sampled locations,

– appropriate instrument range

Although we have to deal with the non-uniform
spatial filter function when interpreting results.



• We’ve (Holt, Wilson, Glass)

– evaluated standard instruments & methods, and

– designed new tools.

• Let’s look at the tension infiltrometer,
– Most common field instrument.

– Use error propagation (Holt et al., 2000)

• to consider the effects of instrument bias
• recalling that is a much more non-linear instrument.

What about relative perm, kr ?



Consider the tension infiltrometer

With simple errors in:
1) Transducers
2) Media Contact
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Saturated
Hydraulic
Conductivity,
Ks

Power αα  in 
exponential
kr model 

200 points sampled



Observation errors cause spatial bias in
variogram model parameters
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Addition of inversion model error changes
the spatial bias
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For unsaturated properties
we cannot satisfy criteria:

– rapid measurements are difficult

– cost per data point is not low

– spatial statistics are not accurate
– they are spatially biased, because of non-linearity

– measurements do not reflect the spatial variation of
properties between sampled locations,

– instrument ranges are limited

              We need alternatives.



Alternative measurements:

Estimate scaling parameters
                  using surrogate methods. (Holt & Glass)

– Measure parameters that scale
pressure-saturation and kr curves

• eg, saturated hydraulic conductivity an d
air-entry pressure

– Example instrument: modified mini-permeamemter

• eg, add water-flow apparatus;
measure air-entry pressure



Alternative description of
spatial variability:

Replace continuous field with indicators. (Holt)

–  Examples of indicators:
•  cutoffs (e.g., the median) of a continuous field, and
• distinct (discrete) architectural elements or facies.

– Preliminary studies suggest
• statistics of indicators are more accurately

estimated,
• even in the presence of significant instrument

noise and bias.
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